12,387 research outputs found

    Free radical formation during machining and fracture of polymers

    Get PDF
    Electron paramagnetic resonance measurements of free radical formation during cutting and grinding of polymer

    Three-body Thomas-Ehrman shifts of analog states of 17^{17}Ne and 17^{17}N

    Full text link
    The lowest-lying states of the Borromean nucleus 17^{17}Ne (15^{15}O+pp + pp) and its mirror nucleus 17^{17}N (15^{15}N+nn + nn) are compared by using the hyperspheric adiabatic expansion. Three-body resonances are computed by use of the complex scaling method. The measured size of 15^{15}O and the low-lying resonances of 16^{16}F (15^{15}O+pp) are first used as constraints to determine both central and spin-dependent two-body interactions. The interaction obtained reproduces relatively accurately both experimental three-body spectra. The Thomas-Ehrman shifts, involving excitation energy differences, are computed and found to be less than 3% of the total Coulomb energy shift for all states.Comment: 9 pages, 3 postscript figures, revtex style. To be published in Phys. Rev.

    A new limit on the Ultra-High-Energy Cosmic-Ray flux with the Westerbork Synthesis Radio Telescope

    Get PDF
    A particle cascade (shower) in a dielectric, for example as initiated by an ultra-high energy cosmic ray, will have an excess of electrons which will emit coherent \v{C}erenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above 102210^{22}\,eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays.Comment: Accepted for publication in Phys. Rev.

    Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150-3224 - Searching for clues on the mysterious evolution of massive AGB stars

    Get PDF
    We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150-3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. We use the best-fit model for IRAS 17150-3224 of Meixner et al. (2002) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 micrometre in radiative transport models to those in ISO-SWS and Herschel/PACS observations. We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 micrometre feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three models, the forsterite crystals need to be dominated by a grain size population of 2 micrometre up to 6 micrometre. We hypothesise that the large forsterite crystals were formed after the superwind phase of IRAS 17150-3224, where the star developed an as yet unknown hyperwind with an extremely high mass-loss rate (10^-3 Msol/yr). The high densities of such a hyperwind could be responsible for the efficient grain growth of both amorphous and crystalline dust in the outflow. Several mechanisms are discussed that might explain the lower-limit of 2 micrometre found for the forsterite grains, but none are satisfactory. Among the mechanisms explored is a possible selection effect due to radiation pressure based on photon scattering on micron-sized grains.Comment: Accepted by A&
    • …
    corecore